Directed cyclic Hamiltonian cycle systems of the complete symmetric digraph

نویسندگان

  • Heather Jordon
  • Joy Morris
چکیده

In this paper, we prove that directed cyclic hamiltonian cycle systems of the complete symmetric digraph, K∗ n, exist if and only if n ≡ 2 (mod 4) and n 6= 2p with p prime and α ≥ 1. We also show that directed cyclic hamiltonian cycle systems of the complete symmetric digraph minus a set of n/2 vertex-independent digons, (Kn− I)∗, exist if and only if n ≡ 0 (mod 4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An upper bound for the Hamiltonicity exponent of finite digraphs

Let D be a strongly k−connected digraph of order n ≥ 2. We prove that for every l ≥ n 2k the power Dl of D is Hamiltonian. Moreover, for any n > 2k ≥ 2 we exhibit strongly k-connected digraphs D of order n such that Dl−1 is non-Hamiltonian for l = d n 2ke. We use standard terminology, unless otherwise stated. A digraph D = (V, A) of order n ≥ 2 is said to be strongly q-arc Hamiltonian if for an...

متن کامل

On the Permutations Generated by Cyclic Shift

The set of permutations generated by cyclic shift is studied using a number system coding for these permutations. The system allows to find the rank of a permutation given how it has been generated, and to determine a permutation given its rank. It defines a code describing structural and symmetry properties of the set of permutations ordered according to generation by cyclic shift. The code is...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Hamiltonicity of the Cayley Digraph On

The symmetric group is generated by σ = (1 2 ··· n) and τ = (1 2). We answer an open problem of Nijenhuis and Wilf by constructing a Hamilton path in the directed Cayley graph for all n, and a Hamilton cycle for odd n. Dedicated to Herb Wilf (1931 – 2012).

متن کامل

On k-strong and k-cyclic digraphs

Thomassen proved that there is no degree of strong connectivity which guarantees a cycle through two given vertices in a digraph (Combinatorica 11 (1991) 393-395). In this paper we consider a large family of digraphs, including symmetric digraphs (i.e. digraphs obtained from undirected graphs by replacing each edge by a directed cycle of length two), semicomplete bipartite digraphs, locally sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009